Indigo formation by microorganisms expressing styrene monooxygenase activity.

نویسندگان

  • K E O'Connor
  • A D Dobson
  • S Hartmans
چکیده

The transformation of indole to indigo by microorganisms expressing styrene monooxygenase (SMO) has been studied. Styrene and indole are structurally very similar, and thus we looked at a variety of styrene-degrading strains for indole transformation to indigo. Two strains, Pseudomonas putida S12 and CA-3, gave a blue color on solid media when grown in the presence of indole. Indole induces its own transformation on solid media but is a poor inducer in liquid media. Styrene is the best inducer of indole transformation in both strains. Arginine represses styrene consumption and indigo formation rates in P. putida S12 compared to phenylacetic acid-grown cells, while the opposite effect is seen for P. putida CA-3. Characterization of an SMO- and styrene oxide isomerase (SOI)-negative transposon mutant of P. putida CA-3 and an SOI-negative N-methyl-N'-nitro-N-nitrosoguanidine mutant of P. putida S12 reveals the involvement of both SMO and SOI in indole transformation to indigo. Both strains stoichiometrically produce high-purity indigo from indole.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120.

In order to design a biocatalyst for the production of optically pure styrene oxide, an important building block in organic synthesis, the metabolic pathway and molecular biology of styrene degradation in Pseudomonas sp. strain VLB120 was investigated. A 5.7-kb XhoI fragment, which contained on the same strand of DNA six genes involved in styrene degradation, was isolated from a gene library of...

متن کامل

Discovery of a novel styrene monooxygenase originating from the metagenome.

Oxygenases form an interesting class of biocatalysts, as they typically perform oxygenations with exquisite chemo-, regio-, and/or enantioselectivity. It has been observed that, once heterologously expressed in Escherichia coli, some oxygenases are able to form the blue pigment indigo. We have exploited this characteristic to screen a metagenomic library derived from loam soil and identified a ...

متن کامل

StyA1 and StyA2B from Rhodococcus opacus 1CP: a multifunctional styrene monooxygenase system.

Two-component flavoprotein monooxygenases are emerging biocatalysts that generally consist of a monooxygenase and a reductase component. Here we show that Rhodococcus opacus 1CP encodes a multifunctional enantioselective flavoprotein monooxygenase system composed of a single styrene monooxygenase (SMO) (StyA1) and another styrene monooxygenase fused to an NADH-flavin oxidoreductase (StyA2B). St...

متن کامل

Styrene metabolism in Exophiala jeanselmei and involvement of a cytochrome P-450-dependent styrene monooxygenase.

The yeast-like fungus Exophiala jeanselmei degrades styrene via initial oxidation of the vinyl side chain to phenylacetic acid, which is subsequently hydroxylated to homogentisic acid. The initial reactions are catalyzed by a NADPH- and flavin adenine dinucleotide-dependent styrene monooxygenase, a styrene oxide isomerase, and a NAD(+)-dependent phenylacetaldehyde dehydrogenase. The reduced CO-...

متن کامل

A Review: The Styrene Metabolizing Cascade of Side-Chain Oxygenation as Biotechnological Basis to Gain Various Valuable Compounds

Styrene is one of the most produced and processed chemicals worldwide and is released into the environment during widespread processing. But, it is also produced from plants and microorganisms. The natural occurrence of styrene led to several microbiological strategies to form and also to degrade styrene. One pathway designated as side-chain oxygenation has been reported as a specific route for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 63 11  شماره 

صفحات  -

تاریخ انتشار 1997